36 research outputs found

    Interactive Chemical Reactivity Exploration

    Full text link
    Elucidating chemical reactivity in complex molecular assemblies of a few hundred atoms is, despite the remarkable progress in quantum chemistry, still a major challenge. Black-box search methods to find intermediates and transition-state structures might fail in such situations because of the high-dimensionality of the potential energy surface. Here, we propose the concept of interactive chemical reactivity exploration to effectively introduce the chemist's intuition into the search process. We employ a haptic pointer device with force-feedback to allow the operator the direct manipulation of structures in three dimensions along with simultaneous perception of the quantum mechanical response upon structure modification as forces. We elaborate on the details of how such an interactive exploration should proceed and which technical difficulties need to be overcome. All reactivity-exploration concepts developed for this purpose have been implemented in the Samson programming environment.Comment: 36 pages, 14 figure

    Epidemiologic studies of modifiable factors associated with cognition and dementia: systematic review and meta-analysis

    Full text link

    Studying chemical reactivity in a virtual environment

    No full text
    Chemical reactivity of a set of reactants is determined by its potential (electronic) energy (hyper)surface. The high dimensionality of this surface renders it difficult to efficiently explore reactivity in a large reactive system. Exhaustive sampling techniques and search algorithms are not straightforward to employ as it is not clear which explored path will eventually produce the minimum energy path of a reaction passing through a transition structure. Here, the chemist's intuition would be of invaluable help, but it cannot be easily exploited because (1) no intuitive and direct tool for the scientist to manipulate molecular structures is currently available and because (2) quantum chemical calculations are inherently expensive in terms of computational effort. In this work, we elaborate on how the chemist can be reintroduced into the exploratory process within a virtual environment that provides immediate feedback and intuitive tools to manipulate a reactive system. We work out in detail how this immersion should take place. We provide an analysis of modern semi-empirical methods which already today are candidates for the interactive study of chemical reactivity. Implications of manual structure manipulations for their physical meaning and chemical relevance are carefully analysed in order to provide sound theoretical foundations for the interpretation of the interactive reactivity exploration.ISSN:1359-6640ISSN:1364-549

    Integrated Reaction Path Processing from Sampled Structure Sequences

    No full text
    Sampled structure sequences obtained, for instance, from real-time reactivity explorations or first-principles molecular dynamics simulations contain valuable information about chemical reactivity. Eventually, such sequences allow for the construction of reaction networks that are required for the kinetic analysis of chemical systems. For this purpose, however, the sampled information must be processed to obtain stable chemical structures and associated transition states. The manual extraction of valuable information from such reaction paths is straightforward but unfeasible for large and complex reaction networks. For real-time quantum chemistry, this implies automatization of the extraction and relaxation process while maintaining immersion in the virtual chemical environment. Here, we describe an efficient path processing scheme for the on-the-fly construction of an exploration network by approximating the explored paths as continuous basis-spline curves
    corecore